AMU = DAMU + FAMU + HAMU
STUDIJNÍ PLÁNY

Matematika 1

Zapsat
Rozvrh na zimní semestr 2006/2007
1 2 3 4 5 6 7 8 9 10 11 12
Po
S
Po
L
Út
S
307 – Učebna 6
(Lažanský palác)
EIBEN P.
Út
L
St
S
St
L
Čt
S
Čt
L

S

L
Kód:
308MA1
Zakončení:
Z
Kredity:
1
Rozsah:
2/T
Vyučující:
Petr EIBEN
Anotace:

Smyslem předmětu je seznámit posluchače s problematikou matematiky jako základu, potřebného pro porozumění elektroakustickým zákonitostem a pro studium navazujících oborových technických předmětů.

Požadavky:

Znalosti matematiky na úrovni středoškolského studia.

Cíle studia:

Cílem předmětu je seznámit posluchače s problematikou matematiky jako základu, ze kterého čerpá student znalosti pro porozumění elektroakustickým zákonitostem, jejichž znalost je nutná pro studium v navazujících oborových technických předmětech.

Osnova (a sylabus):

1. Množina reálných čísel, její vlastnosti. Množina komplexních čísel. Pojem reálné funkce jedné a více proměnných. Funkce sudá, lichá, periodická. Funkce složená a funkce inverzní.

2. Limita funkce a její vlastnosti. Spojitost funkce v bodě a na intervalu. Základní elementární funkce: mocninná, exponenciální, logaritmická, funkce goniometrická, cyklometrická, hyperbolická.

3. Derivace funkce, její geometrický a fyzikální význam. Derivace součtu, součinu, podílu funkcí a složené funkce. Derivace inverzní funkce. Derivace elementárních funkcí. Derivace vyšších řádů. Parciální derivace.

4. Langrangeova věta o střední hodnotě. L´Hopitalova pravidla. Extrémy funkce lokální a absolutní. Taylorův vzorec. Maclaurinovy polynomy elementárních funkcí.

5. Neurčitý integrál. Primitivní funkce, její základní vlastnosti a výpočet. Metoda per partes a metoda substituční. Příklady.

Studijní materiály:

T. Bílek: Matematika I., II., Učební text ČVUT 1982, 1983

J. Nagy : Elementární metody řešení obyčejných diferenciálních rovnic.

Poznámka:
Předmět je součástí následujících studijních plánů:
Platnost dat k 23. 4. 2007
Aktualizace výše uvedených informací naleznete na adrese http://studijniplany.amu.cz/cs/predmet308MA1.html